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Functional Equations for Path Integrals 
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We consider the density matrices that arise in the statistical mechanics of the 
electron-phonon systems. In the path integral representation the phonon coordi- 
nates can be eliminated. This leads to an action that depends on pairs of points 
on a path, that depends explicitly on time differences, and that contains the 
phonon occupation numbers. The integral is reduced to a standard form by 
scaling to the thermal length. We use the technique of integration by parts and 
add specially chosen generating functionals to the action. We set down func- 
tional derivative equations for the source-dependentdensity matrix and for the 
mass operator. This allows us to develop a series of approximations for the 
operator in terms of exact propagators. The crudest approximation is a coherent 
potential approximation applicable at a general temperature. 

KEY WORDS: Path integral; electron phonon interaction; functional 
equations, 

1. INTRODUCTION 

Our concern is with electron-phonon problems, where the interaction is 
linear in the coordinates describing the phonons. We use the Feynman path 
integral representation of the amplitudes. It is possible to eliminate the 
phonon degrees of freedom. The reduced electron propagator contains an 
action that depends on the path positions at two times x(u) and x(u'). It 
also depends explicitly on the time difference [u - u' I, a feature that stems 
from the inertial lag of the ions from which the phonons are constructed. 
The effective action depends on the state of the phonons, and the simplest 
case is the ground state to ground state phonon amplitude. There is also a 
"Euclidean" form of this expression in which one replaces the time by 
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fl = it, and obtains the corresponding multitime Wiener integral. Here fl is 
not a physical inverse temperature. We will continue to speak of a "time"/3 
and an "action" in the Wiener integral case. 

Wiener integrals of this type also occur when one considers the 
equilibrium statistical mechanics of the electron phonon system at a finite 
physical inverse temperature ft. Starting from the path integral representa- 
tion of the density matrix of the system as a whole, one can again integrate 
over the phonon paths. The result is the reduced electron density matrix. It 
has an action with the same multitime type of dependence on the electron 
paths. There is, however, an additional /3 dependence arising from the 
thermal occupation numbers of the phonons, including separate emission 
and adsorption terms. 

This is well known and has been explained in detail in the books of 
Feynman and Hibbs (1) and Feynman. (2~ There are a number of advantages 
in using a representation where the phonon coordinates have been exactly 
eliminated. If the original Lagrangian has a coupling constant g, the 
expansion of the reduced density matrix goes in powers of g2 In addition 
the thermal occupation numbers of the phonons appear directly, and 
correctly, in every order of the expansion. Furthermore, there is a variety of 
ideas and techniques that are specific to the path integral representation 
and are non-Hamiltonian in nature. One of these ideas is the use of 
nontrivial trial actions to define an unperturbed problem. Examples are the 
mean path action and the quadratic action used by Feynman in his polaron 
theory. A second idea is the semiclassical approximation scheme (3~ that 
results from expanding about classical paths in the parameter space. 
Another, closely related method is the theory of the asymptotic expansions 
of Wiener integrals. (4-6) Techniques are also available to find successively 
more accurate lower and upper bounds to Wiener integrals. We have 
summarized and extended some of these techniques in a series of recent 
papers. (7) 

On the other hand there are some cases where the direct use of the 
path integral is awkward. For example, one is frequently interested in the 
complex wave number and energy-dependent mass operator Z ( k l s  ) in 
order to display the spectral properties of the system and to compute 
dispersion and damping of excitations. One can compute the mass operator 
by "hand cranking." This involves expanding the exponential and comput- 
ing the spatial Fourier and temporal Laplace transforms. One can then 
match the series to the equation that defines the mass operator. This gives 
Z(k I s) as a series in g2 in terms of the bare propagators. To do better, one 
has to sum infinite classes of diagrams. 

There are other situations in which the direct use of the path integral is 
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awkward. For example, even in simple potential theory with delta function, 
shell, or hard core potentials, the evaluation of the integral involves tours 
de force (cf. the work of E. Lieb, (8) where, however, interesting results are 
derived). It is much easier to retreat to the Schr6dinger equation or the 
Bloch equation for the density matrix, using Feynman-Kac equivalence. 
One then works with standard eigenfunction methods. This equivalence is 

'easily proved from the starting point of the path integral, by using an 
integration by parts technique. This immediately yields the integral equa- 
tion form of the Bloch equation. In the potential problem the mass operator 
is simply the local, energy-independent potential itself. When the starting 
point is the phonon-eliminated Wiener integral for the reduced electron 
density matrix, the integration by parts technique allows one to write down 
an infinite hierarchy for correlation functions. This hierarchy is the analog 
of the Bloch equation of the potential problem. Successive truncations of 
the equations of the hierarchy allow one to avoid the "hand cranking" of 
the simple expansion. One automatically obtains expressions for the mass 
operator. It is easy to find the coupling constant expansion and some 
limited nonperturbative extensions. However, these results are in terms of 
the bare propagators. 

An elegant way of deriving this hierarchy is to add a generating action 
to the original action. The Bloch equation is replaced by a functional 
derivative equation. This corresponds to the standard Schwinger ap- 
proach (9) to quantum field theory. However, in order to use this approach 
on the phonon-eliminated action, one must invent nonstandard generating 
actions. This is the focus of the present paper. It is then easy to find a 
functional equation for the source-dependent mass operator and to find a 
new hierarchy that involves exact propagators. 

The phonon-eliminated action has mainly been used to calculate the 
path integral from the space-time viewpoint. Examples are cumulant expan- 
sions, (1~ trial action theories, etc., as mentioned above. The connection 
with field theory methods, e.g., vertex functions, mass operators, and so 
forth, has not been examined carefully. To be sure, field theory has been 
extensively applied to the original coupled field Lagrangian, but this does 
not make real use of the advantage of the phonon-eliminated action. 

There is very early work by Puff and Whitfield (11) on a Green's 
function formulation starting with the equations of motion for the coupled 
fields. They eliminate low-order phonon Green's functions and then make 
truncations. However, this was not carried very far. There is also interesting 
more recent work by Peeters and Devreese (12) on equation of motion 
techniques, where again one can eliminate phonon degrees of freedom. 
There is also a very recent paper by Kholodenko and Freed (~3) on the 
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direct approach to the mass generator in terms of bare propagators. We feel 
that the generating function theory for the phonon eliminated action that 
we present here is a more powerful and systematic approach in the same 
direction. 

To make clearer what we mean, we summarize our recently published 
work (~4~ on a closely related problem. This is the multiple scattering of an 
electron by a system of scatterers with random, uncorretated positions. 
Edwards and Gulyaev (15~ showed that the averaging over site positions in 
the path integral leads to a multitime action for the electron Green's 
function. In the limit of weak dense scatterers, this becomes a simpler 
two-time functional, without explicit time dependence. The relation is that 
of a Poisson to a Gaussian process. 

This problem had already been studied by Edwards (16~ and also by 
Klauder, (17) using field theoretic ideas, but not path integrals. They intro- 
duced mass operators, summed classes of diagrams, and developed coher- 
ent potential approximations. There has been considerable development 
along these field theoretical lines, especially in the Gaussian limit. In 
particular Tatarski, (~8) Furutsu, (~9~ and Chow (2~ used the method of 
functional derivatives to formulate the theory and extend it to compute 
higher correlations. 

The novel aspect of our work was to start from the Edwards-Gulyaev 
path integral for the Poisson process. We introduced a generating action 
that was specific to the Poisson process, and was different from the 
standard generator. It produced the bare atomic scattering matrices di- 
rectly. In this way it was possible to treat strong scattering exactly, without 
infinite summations, as had been necessary in the Edwards and the 
Klauder work. From this point on, the standard field theory machinery was 
set in motion. A density expansion was obtained for the mass operator, 
both in terms of bare and exact propagators, and in terms of bare and 
medium scattering matrices. The functional derivative method was used to 
derive a new hierarchy, and it was shown that nonperturbative truncations 
were natural. 

This work utilized one of the strong points of the path integral 
representation, namely, the ability to do the site averaging exactly ab initio. 
We built a bridge to field theoretic approaches that are most succinctly 
expressed in equations for functional derivatives. The bridge used a specifi- 
cally adapted nonstandard generator. 

We do a similar thing here for the electron-phonon problems. The 
phonon-eliminated actions are simpler than the Edwards-Gulyaev (Pois- 
son) action in that they depend on only pairs of path points. But they are 
more complicated in another way, namely, that there is explicit time 
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dependence. This again requires us to invent suitable generating actions, 
and we find that this can be done in several ways. 

In Section 2 we introduce the actions that will be analyzed, and reduce 
the path integrals to a standard form by scaling to the thermal de Broglie 
length. A new "time" parameter is then introduced. We discuss why this 
procedure is necessary for actions that contain thermal weighting factors. 

In Section 3 we describe the method of obtaining functional derivative 
equations for the path integrals. The initial case that is treated is the 
time-independent, nonthermal, Gaussian random potential action. Then 
the stardard generating functional is appropriate and the functional equa- 
tion is already known. It, however, allows us to introduce the integration by 
parts technique that is used in everything that follows. Next we discuss the 
time-dependent, but ground-state polaron problem, i.e., electron-optical 
phonon interaction. There are at least two nonstandard generators, and one 
of them is analyzed in detail. We then proceed to write down a generator 
and a functional equation for the polaron with thermally averaged 
phonons. Finally we do the same thing for the general, thermal, single 
branch, electron-phonon action. 

In Section 4, the functional equation for the Laplace transform I(s) of 
the source-dependent path integral I(t) is studied. The focus is on a set of 
correlation functions which are defined as the functional derivatives of I(s) 
evaluated in the limit of vanishing source strength. The correlation func- 
tions are linked in an infinite hierarchy of equations that involve the free 
electron density matrix or "bare propagator." The hierarchy can be used to 
derive the temperature-dependent mass operator for the general electron- 
phonon pI\oblem as a series in the coupling constant. It can also be 
truncated to find closed operator equations for the lowest-order correlation 
function. We show that this equation can be solved to a better approxima- 

t i o n  than straightforward iteration by introducing "screened" propagators. 
The screening is equivalent to including an infinite class of diagrams. 

In Section 5, we derive the functional derivative equations for the 
source-dependent mass operator Zj .  We consider a set of correlation 
functions which are the values of the functional derivatives evaluated in the 
limit of vanishing source strength. The correlation functions are linked in 
an infinite hierarchy of equations, each of which involves the exact density 
matrix or "propagator." In all of the cases there is natural sequence of 
approximations. The crudest one is a generalized "coherent potential" 
approximation involving a self-consistent equation for the mass operator. It 
applies to the density matrix at arbitrary temperatures. 

The next approximation results in a linear operator equation for the 
first correlation function. It yields a mass operator that is accurate to the 
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second power of the interaction and is in terms of the exact propagators. 
The equation can be solved exactly when the spatial interaction is a 
one-dimensional delta function. The result is equivalent to the sum of an 
infinite class of diagrams involving exact propagators. 

In Section 6 we briefly describe the theory based on a second type of 
generating functional. It is actually simpler to derive the bare propagator 
theory with the resulting functional equation. However, the functional 
equation for the source-dependent mass operator is more complicated. It 
appears easier to develop the exact propagator expansions with the first 
generating functional. 

. REDUCTION TO A STANDARD FORM 

For the Gaussian random potential problem, the averaged action is 

=  'Dex (R'[P(fl)IR2) 22 exp[A'( 

D ~ x = 5 ~ r  - ~ 3 0  \ 

The covariance function f (x)  is characterized by a strength and a 
length. The path integral depends only on R = R~ - R 2, in virtue of the 
translation invariance of A'. 

From ~(fi) we obtain the spectral density and density of states per unit 
volume by inverse Laplace transforms. Thus, 

n(klE) = 1 (c+i~df ie~e(dRe ,ke (Ri f ( f i ) [O)  (2.2) 
2rri Jc- i~ J 

1 r d 
n (E)  = 27i~i Jc-i~ fleVe<0[e(fl)10> (2.3) 

We will concentrate on finding (R IP(fl)10). 
One can scale the path integral in units of the thermal de Broglie 

wavelength V~- Thus introduce 

y(u)  = x(u) / , / - f i ,  v = u/fi ,  ~ = R/~-f i  (2.4) 

and rename the dummy variables y and v as x and u. Then 

%RlP(B)I 0) = (1/B)d/2<~l~(l)10) (2.5) 

( h =  m =  1) 
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Here 

(~lP(t)lO) = f jDlx exp[ A (t) ] (2.6) 

1 rt rt  
A ( t ) = - 2 J o J o W [  ( ) - x  u x(u ' )]dudu '  (2.7) 

We call the integral that results from making the shift of the upper 
limit of fi to unity by de Broglie scaling, the standard form. We will study 
A (t) for general t, and set t = 1 at the end of the analysis. For the Gaussian 
random potential problem fl is not a physical inverse temperature. We first 
compute the time-averaged Green's function and interpret fi as i times the 
time. 

For the thermodynamic polaron problem one starts the density matrix 
for the combined electron-phonon system at an inverse temperature ft. 
After integrating over the optical phonon coordinates, one finds the two 
time action A'( fl): 

1 2fOOi3fo013 1 e-~~176176 
A' ( f l )  = -~ go Ix(u)  - x(u')l 1 - e -~~ 

(2.8) 
Here g~ is a coupling constant, and ~0 0 is the angular frequency of the 
optical mode. 

After scaling to the thermal length, we study 

Here 

A(t)= �89 foo'foo'f W[x(u)- x(u')laIe-"l" ='ldudu'da (2.9) 

W(x I~) = W(x 11)8(~ - 1) + w ( x  I - 1)~(~ + 1) 

g2 
W(x  I 1)= ~ ( 1  - e-~) -~ 

(2.10) 
W ( x  I - 1) = w ( x  I1)e-~ 
~o = fiWo, g2 = g20~3/2 

For the general, single-branch, thermal phonon problem, with a spec- 
trum w0(k), after eliminating the phonon coordinates, one is left with an 
action A'( fl): 

A'( fi ) = 1 f dk f (k)e ik'[x(u,-x'u')] e-~~ + e-~'~~176 
1 - -  e - # ' ~ ~  

(2.11) 
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It suffices to study the scaled form 

A(t) = 1 f fdkda lZV(kla)s163 ' (2.12) 

Here 

l~(kla ) = l~(k I 1)6(a - 1) + I~(k I - l )6(a + i) 

(2.13) 

W(kl l) = B(2-d/2~f( ~ )[1-- e-~(k)] -1 

ff'(k I - 1) = l~(kl  1)e -~ 

We now explain why scaling to the thermal length 
Associated with (~'l~;(t)10> is the Laplace transform 

(~ Io(s)lO> = fo~dZ e -s , ( f  I~(01o> (2.14) 

with the inverse 

1 c +  im  st <~l~(OlO> = ~ s dse (~lo(s)lO> (2.15) 

We will also use the spatial Fourier transform pair 

fi( k l s) = f dr eikf (~ Ip(s){0) 
(2.16) 

%~lo(s)lO>- 1 f dke - , k~ f i ( k l s )  
(2,7) d 

fi(kls ) will be computed in terms of a mass operator ~ ( k  ] s), defined as 

2 (k  [ s) - Po l(k} S) -- P - ' ( k l  s) 
(2.17) 

15 o ' ( k  I s) = s + k2/2 

~(kls ) is the main object of our analysis. One has 

(gl~(t)lo>= f dk e-'k~ 1 c+i~176 k 2 ]- 
(2~r) d 2vris [.IS+ -~ -Z(kls) (2.18) 

is important. 
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On the other hand, the expression for the original {R I P(fi)]0 ) is 

,Sd/2(R IP(/ )IO> 

- f e'B[ s+ -~(kls)]-' 1 dke-ikR 1 (c+i~176 k 2 
(2Tr) s 2~ri ./c-- i ~  -2- 

(2.19) 

where 

1 S ( k l s) = -fi g:( k,[-fl [ sfl ) (2.20) 

The quantity S(k[s) will be fi dependent when there has been thermal 
averaging of the phonons. It is independent of/3 for ground-state problems 
and for the Gaussian random potential problem (a zero-frequency phonon 
problem). 

The main point is best illustrated by writing down the coherent 
potential approximation, which is the simplest nontrivial approximation. In 
Section 5 we will derive the expression 

2(kls)--f fdk, 
X l~(k,  

From this it follows that 

1 

(k +2 k')2 2(k + k, Is)] 
(2.21) 

 (kl ,) = (1 - e-B o%-'fdk, f(k,) 
[ (k + kl) 2 

X s +  2 S(k + k, Is) + %(k,)]  

( k  -'t- k l )  2 
+ e-/~~ s + 2 S(k+ kllS)-~o(kl)] -1} 

In this last expression, everything is explicitly expressed in terms of the 
parameters of the original action A'(fi). We see that the fl dependence of 
S(k[ s) comes from the thermal weights. The techniques to be employed in 
later sections, viz., integration by parts and introduction of suitable generat- 

- I  

(2.22) 
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ing functions, can be used with A'(fl) when there are no thermal weight- 
ing factors. It is not necessary to scale to the thermal length. On the 
other hand, these techniques run into difficulties when A' ( f l )  involves 
fl-dependent thermal weights. This is the reason for first scaling to A (1), 
where fl occurs as a parameter. Then t is introduced as a "time" evolution 
generator and the techniques apply. 

3. CONSTRUCTION OF THE FUNCTION EQUATIONS 

3.1. Gaussian Random Potential Action 

We start with the simplest case, i.e., the time-dependent action that 
results when the potential acting on a particle is averaged over a Gaussian 
distribution. For this case Eq. (2.7) can be rewritten as 

T u t 

a(y)= f f dz+, w(z- y,)s dus du y,) (3.,) 
Integration by parts on the time variable allows one to write 

OA(t) 
( ~ l # ( r )  - # o ( r ) l ~ ' )  = ( : D r x (  Tclt a;' a0 ---3-7- ea(0 (3.2) 

N o w ,  

OA(t) 
O' - - ; ;  dZNyl W(z-- yI)~(X([)-- z)s yl)dbl (3.3) 

Hence, we have 

(;1~( T)  Yl) 

• fZDtx( t6(x(u  ) - yl)due A(') (3.4) 
J~' JO 

Next, add a term 

A,(r )=  f dzS(Z) foTS(x(u ) - z)du (3.5) 

to the action, and denote the resulting integral as 

<~l[ (T) l~ '>=~Dyxexp[A(T)+ A j ( T ) ]  (3.6) 

,f(T) reduces to t3(T) when J = 0. 
One can generate the path integral in Eq. (3.4), representing a correla- 
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tion function, by taking the functional derivative 

a <z l i ( t ) lV)  
8J (y l )  

The price that must be paid is the additional term 

OAj(t) 
= f dzJ(z)a(x(O - z)eA+Aj(') eA + Aj( t) 

Ot 
This leads simply to a contribution J(z)(z]f(t)l~' ). 

Putting these elements together, we have the functional equation 

( ; l i ( r )  - ~;0(r) l~ ' )  

(3.7) 

(3.8) 

As was mentioned in the Introduction, for the Gaussian case we have 
used the standard generating function, and the results are well known. (17 ~9) 

We may take Laplace transforms. Then 

(~ I,'(s) - p0(s)l~'5 

= f dz (~[po(S),~)[ f dy, W(Z _ yl) 6J(Yl)6 + j(z) ](zlZ(s)lg, ) (3.9) 

A more transparent form is 

(3.1o) 

Here 

(~ ' l l l f f ' )  = 6 ( f  - ~") (3 .11)  

Let us recall that the mass operator is introduced by the definition 

( ~ F i ( r )  - ~;0(r)l~'> 

T ^ 

= f f dxldX~fo dt<~loo(T- t ) fx ,>  

x j~'dt~ (x~lts(t - t,)lx2)(Xzl[(tOl~' > (3.12) 

Here r ) is the free particle density matrix 

(~l~o(V)l~') = (2~rr ) -a /2exp[- (~"  - ~')2/2T 1 (3.13) 
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The convolution form in time implies simple products for the Laplace 
transforms. Using matrix notation, 

<~lpol(s)I(s) - lls'> = (~lZj(s)I(s)l~'> (3.14) 

<~lI(s) - po(S)[~"> = (~lPo(S)Xs(s)I(s)]~') (3.15) 

Thus the J-dependent mass operator is 

Za(s) = po'(s) - i - ' (s)  (3.16) 

At J = 0, Zj  is simply Y~. Then 

8I j=o =fay, l; '> (3.17) 

3.2. Phonon Problems 

We now derive the functional equations for the more complicated 
actions that occur when phonons have been eliminated, and where there is 
explicit time dependence. We start with the simplest ground-state polaron 
case, and then proceed to the thermal problems, emphasizing only the new 
points that arise. 

Express the action of Eq. (2.9) at zero temperature for the phonons as 

I s163 <~ (3.1g) a ( v )  = 

Reexpress this as 

A(t) = l ldz  d y, W(z - yl)s163 - Z)($(X(U') -- Z)du' 

(3.19) 

8t - f f dz dy 1 W ( z -  y , )6 (x ( t ) - z ) [  s  ~')6(x(u')- y,)du'] 

(3.20) 
A useful generator can be introduced in at least two different ways. 

One is 

A,(T)= f dzJ(z)[ s '<r-%$(x(u)- z)du I (3.21) 

 A(t) 
Now 
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Then 

0A (t) 
(~ e A +Aj (3.22) = f f w(z- z) 

The price that must be paid involves 

aAj(t)at fdz 8(x(t)-z)- o~fdy,a(yl)[ s176 y,)du ] 
(3.23) 

In the last term we insert a "stop" at time t, viz., 

1 = f d z  6(x(t) - z) (3.24) 

~/eA+A'= f a~a(x(t) -z) J(~)-'f'iY'J(YO a~(m,) e'+A'(') 
(3.25) 

We now have all the ingredients of the functional equation. The Laplace 
transform is 

(~[pol(s)l(s)-  l [f '  5 

={j(~)+ fdy,[w(~-y,) ~ 8J(y,) 6 

(3.26) 

The generalization to the thermally averaged polaron is immediate. The 
action is Eq. (2.9). Add the generating action 

Aa(T)= f f dzdaJ(zla)s ' (3.27) 

We find 

=fd,~,{J(~la,)+ fdy,[W(~=y,) ' 6J(y , )  

a 6 

(3.28) 
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Finally the general thermal phonon action is given in Eq. (2.12). The 
generating action is 

Aj(T)= f dkdzdee[s176 (3.29, 

We then have the functional equation 

<gloo q -  llf') 
= f d ( l ) J ( 1 ) , ( ~  - y,)<f I/If'> 

6--~(1) (~lIl~") (3,30) 

We use the notation 

In later 
examined. 

~o, = ~o(k O, J(1)  = J (k , lY , l~ , )  (3.31) 

8 _ 8 (3.32) 
8J(1) 6J(k~]yl[~) 

sections the utility of these functional equations will be 

4. GAUSSIAN RANDOM POTENTIAL 

Let us start the discussion with the time-independent Gaussian noise 
problem governed by the functional equation (3:10). Take functional deriv- 
atives and then set J = 0. Define the correlation functions 

~~ o I~'> G' IM(y ,  . . . .  ,yn [ s)l~'> -- <gl ,V(y,)[7 [-Sj(y,) (4.1) 

One then finds a standard chain of equations for the M operators; 
note that I(s) at J = 0 is p(s): 

<flpo~I- ll~'> = f dyl W(f - yl)<glM(yOl~'> (4.2) 

(~10o ~M(Y,)LU) = (~'I01U)8(~" - U) + f dy2 W(~ - y2)<~IM(y~, Y2)l~'> 

(4.3) 

(g[polM(yl, Y2)[g') -- (fIM(Y2)Ig')8(Yl- f) + (g[M(yl)tg')8(Y2- g') 

+ fdy 3 W(f - y3)(flM(y~,y2, Y3)lf'> (4.4) 

There is an obvious sequence of approximations, the most primitive 
being to neglect M(yly2[s) entirely. Then 

(glM(Y~)lf '> = (g[OoIY~>(Y~[OIg'> (4.5) 
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w(; - i") 

(~']Y(s)lf') ) [" ] 

Fig. 1. 

This is automatically of a form to yield a result for the mass operator. 
Inserting this result into Eq. (4.2) 

<glPo'P - l l f ' >  -- f dy~ IV(g - y,)<flpoly,><y,[plf'> (4.6) 

(4.7) 

This may be pictured as shown in Fig. 1. 
In the next approximation we neglect M ( y  1, Y2, Y3). This leads to 

errors in the W 3 term of the mass operator expansio n. Eliminating 
M(yl.y2) gives a self-contained linear operator equation for M(yl) .  

<~']Po ZM(y,)]~"> = ( ~ l p l ~ ' ) 8 ( y ,  - ~)  

+ fdy2 w ( ;  - y2)~; ]poly2)(y2[M(yt)[~ ') 

+ fdv2 w(~ - Y2)(~IPolY,)(YllM(y2)I~') (4.8) 

Replacing M(y l )  by its lowest-order (14z ~ value yields the W 2 accurate 
value of 5:: 

<~lx(s) l~"> = I v ( f  - g ' )< f l0o l f '>  + ff+,ay2 
x { W ( f -  f ' )W(y~  -Y2) + W ( f - y 2 ) W ( y ~  - ~')} 

• (~ Iooly~)(y~lpoly2)(y2lpolf') (4.9) 

The IV 2 terms of E may be pictured as shown in Fig. 2. There is a 
second-order diagram that occurs in the direct expansion of the path 
integral expression for p in powers of the action (Fig. 3). This is suppressed 
(together with iterates), by going to the mass operator expansion. 

w(i" - i") 

W(yl-Y2) I 
Yl Y2 

+ 

Fig. 2. 

I 
w(y~-  ~') 

I 1 
Yl Y2 ~' 
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, 

W ( [  - Y l )  W ( y 2  -- ~ ' )  

Y~ Y2 f' 

Fig. 3. 

The integral equation for M(yl]S ) is complicated. The complete 
solution is equivalent to including classes of higher-order diagrams in the 
expression for E. However, one observation is in order. The two terms on 
the right-hand side of Eq. (4.8) have distinct structures. This makes it 
possible to do something beyond straightforward iteration. Take the Fou- 
rier transform 

<kl ~)(Y,)l g'> = f e ik;(ftM(y,) I ~') d[ (4. lO) 

( k[hTI(y,)]~') S~(k) = eiky,(YllO[f ) + f eik~ d f f  dy2 W(~ - Y2)(f[PolYl) 

• (y~lM(y2)lf ') (4.11) 

Here 

with 

~(k) = Oo '(kls)  - f dk2 [7V(k - k2)~0(k2 Is) (4.12) 

It is now possible to make a revised expansion. In lowest order 

(flZ(s)l~') = W ( ~ -  f ) F ( ~ -  ~') (4.13) 

FCs) - 1 "[ e-'k: dk (4.14) 
d J 

The "screening" of M(y 0 by/~(k) is associated with the first diagram 
of Fig. 2. However, this type of diagram does not occur when the mass 
operator is expressed in terms of exact propagators to(s). This will be done 
in the next section. The expression in terms of exact propagators is both 
logically simpler and more accurate. 

4.1. Bare Propagator Expansions for Phonon Problems 

We now study the optical phonon problems using the functional 
equation (3.26). We use the notation 

M ( 1 , 2  . . . .  I t )  = M(y,  y2 21 s) 
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for the functional derivatives at J = 0. The hierarchy is 

(.~[Po'P - I I~")  = f d ( 1 )  W(~" - y ,  I a , ) G ' I M ( 1 ) [ ~ " )  (4.15) 

<~'[[P0--I(S) "I'- o/I(oOjM(l l s)]~">(~(~" --Yl)  

+ fd(2)  W(f -y2Ja2)( f lM(1,2]s) l f ' )  (4.16) 

(~"l[O- I(S) --1-- (0/1 "~ a2)~01M(1,2 [ s)l~" > 

= 8(~ - y l ) ( f l M ( 2 1 s ) r f ' )  + a(f  - y 2 ) ( f f M ( l J s ) r f ' )  

+ fd(3)  W(f -Y3 [ %)G'IM(1,2, 3 [ s)lU) (4.17) 

The new point is the appearance of phonon-modified propagators 

po'(S) + (a I + a2)w = pol(S + (a, + 42)~o ) (4.18) 

Equation (4.16) may be rewritten as 

(filM(1 I s)l~"> 

= G'10o(S + ,x,a,)ly,)(y,lo(s)lf') 

+ f d(a) f <gloo(, + ,,,,o)lz>dz - y 2 ) ( z l M ( 1 , 2 1 s ) [ f ' )  (4.19) 

Equation (4.17) is 

( f fM(1,21s) f f ' )  = G'100(s + (a~ + ,~2)o)lyl)(y~lM(z)[f') + 1 ~-2 

+ f d ( 3 ) f d z  < lOo(, + + 

X W ( z  - .v3)(zlM(1,  2, 31 s)lff' ) (4.20) 
From this point we proceed just as in the Gaussian random case. To 

order W the mass operator is 

(~lZ(s)[~ ')  = f & ,  W(~ - ~"1 ~,)(~lP0(s + ~,o)1~' ) (4.21) 

which may be pictured as shown in Fig. 4. The second-order correction 
may be read off from the diagrams in Fig. 5. The electron propagator 
between two points depends on the number of phonon lines above it. 

wG" - ~") 

<flOo(S + ~l'~)lf') f' 

Fig. 4. 
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w(f - f'l ~) 

s" <glOo(S+ al~)ly,> (Y21PO( S + ~,~)1~'> ~' 

W ( y l  -Y 21  a2) 

I 
Yl ()'llO0(s + alO~a2~o)ly2 Y2 

w(~" - y21 '~0 

g ( y  I -- ~' I 0~2) 

<fflpo(S + al~)ly~) Yl (y~lPo(S + cqco + a2~o)ly2> Y2 <ytloo(S + aa,o)[g, ) 

Fig. 5. 

In the approximation that neglects M(123), we eliminate M(12) to find 
an equation for M(1 Is). It is 

<~1Oo'(~ + ~,,o)M(1)L~') - fd(2)  w(~ -y21~2) 

• (~]Po(S + a,o~ + a2co)ly2)(y2lM(1)]~'  ) 

= <~ Io(s)l ~') 8 (~ - y,) + fd (2)  w(~ - Y21 -2) 

• (~[O0(s + a,o~ + a2~o)[y , ) (y , lM(2) l~ '  ) (4.22) 

In taking the Fourier transform we encounter 

f X ( k l ~ , ) = S + ~ l , O + y -  P ( k [ 0 1 s + ~ , , o + ~ ) d ~  (4.23) 

Here 

f f  ( k l y ,  - y21s + ~,o + a2~) 

= f d~eik~W(~ + Y l  - Y 2 1  a2)(f lpo(S + al~ + a2~o)10) (4.24) 

The equation for M(1) is 

= eiky,(yt lp(s)lg'  ) 

+ f da2dy2P(kly,-y21s + at~ + a2~o)eikY'<y,lM(2)[f'> (4.25) 

Thus we can again make a W expansion with screened propagators. 
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Finally we study the general finite temperature action (3.30). The 
equations of the hierarchy at J = 0 are 

(~ lpo lp  - 11~") = f d ( 1 )  l~(k,  I a,)eik'r ) (4.26) 

( ; ] [ p o l ( s )  + a lO~l ]M(1) l t ' )  = (~ ' IO(S)I~ ' )~( t - - .Yl)  

+ f d ( 2 )  I~( k 21 a2) e ik2(t -y2) ( ( I M (  1,2)If ')  

(4.27) 

<:l[oo'(S) + ~,,o, + a2o~2]M(1,2)[U> 
= ~(~" - y,)(~'lM(2)l~'~ + 1 ~-2 

+ fd(3) ~(k3 l a3)eik'~t-Y')(~[M(1,2,3)l~'~ (4.28) 

Everything proceeds as in earlier cases. In lowest order 

po ~(s) + ~,~(k~) 
If'> 

(4.29) 

5. MASS OPERATORS AND EXACT PROPAGATORS 

In the present section we analyze the mass operator Y.(s) when it is 
expressed in terms of exact propagators p(s). This then implies that a 
difficult nonlinear self-consistency problem is encountered. However, there 
is a gain both in logical simplicity and in accuracy. The lowest approxima- 
tion is a simple coherent potential approximation applicable to the finite 
temperature case. Once one has a functional equation for I ( s )  one can set 
in motion the machinery developed by Dyson, Feynman, and Schwinger. 
The first step is to find a functional equation for Zj.  

5 . 1 .  Gaussian Random Potential 

We multiply Eq. (3.10) by I i on the right-hand side and use Y~ 
= P o  1 _ I - 1 to obtain 

8Zj  I 
(~l~,l~'> =f • ,  w(; -y,)(;I 6 j (y i )  - ' [~" )+  J ( ~ ) 6 ( ~  - ~') (5.1) 

Now 

(~ ( / /  l) = 0 (5.2) 
6 J ( y , )  
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implies 

61 1-1 = I 3Zs (5.3) 
~J(Yl) ~J(Yl) 

So we have the functional equation for Zj  

8Z s 
<~1~1~'> = J ( ~ ) 6 ( ~  - ~') + f dy 1W(f  - y , ) < f ] I ~  If'> (5.4) 

It involves the exact propagator I, rather than Oo(S). Next, we want to 
take functional derivatives to form a hierarchy. Note that we repeatedly use 

61 8Ej 
8i-(-y , ) - 18~( y l ) 1 

Define 

8Y~j 
(1)(yl) = [ 8j(yl------ ~ (5.5) 

We will frequently write J(1) for J(Yl), ~(1) for (I)(yl), etc. Taking 
functional derivatives and setting J ---- 0 yields the hierarchy 

<r162 = J ( r 1 6 2  - ~') + f d y ,  Vr - y,)<r > (5.6) 

(;1~(1)[~"> 

8~(2) 

(5.7) 

a~(2)  
<~18-Ei]-(O IV> = <~l~(1)II;'>8(; -y2) 

84)(2) 
+ f fdz dy, (~[6i)(1)/Iz> W(z - yl)(Zl 8~-(~-(i ) [;'> 

6~(3) 
+ f d z  <; [ I l z> fdy3  w(z - y3)<zl 3./(2)6J(1) [~'> (5.8) 

Note that we have interchanged 1 and 2 in the last equation, to 
prepare for insertion in the previous equation. 

The crudest approximation is to neglect 8~(2)[6J(1). Then since I at 
J - -  0 is p(s) 

<~[~[~"> = W(~"- ~")(~'IPIS"> (5.9) 

which is pictured as shown in Fig. 6. 
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(~lo(s)lf') 

Fig. 6. 
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In the next approximation we replace 6(b(2)/6J(1) by its value at 
W = 0. This leads to a linear equation for ~(1) 

+ f dz (~lolz> W(z - ~')<zl~(l)o/~'> (5.10) 

if we replace (I,(1) by its zeroth-order value in the second term we get Y to 
accuracy W e. Relabeling the dummy variables, we find (at J = 0) 

+ f f d y  1 dy 2 W(~ -- Y2) W(y l  -- ~ t)(~ IPlY1>(Yl IolYm>(Y21Pl ~'> 

(5.11) 

The second term may be pictured as shown in Fig. 7. When we use exact 
propagators, only the completely linked second-order diagram occurs. This 
observation was made long ago by Edwards. (16) 

The solution of the equation for ~(1) corresponds to including an 
infinite number of additional graphs. The result of E is still in error in the 
W 3 term. The integral equation can be solved exactly for the case of 
one-dimensional white noise, when W(x) = h6(x). We find 

)[ X2 fe'~(Y-~') l~(k) -dk] (5.t2) 

w(~ - y2) 

w(yl - ~') 

<#lolyJ> Y' <y~loly2> y2 <y21plT'> 

Fig. 7. 
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with 

.~(k) = f dz e'k:(zlolO)(OloIz> (5.13) 

Then 

(glYW) = x(gl~(ff)lK') 

(5.14) 

and finally 

X 2 /q(kl) 
E(KI s) = X<01ol0> § ~f1-27-~(k,) ~(k+ k'ls)dk' (5.15) 

5.2. Ground-State Polaron Mass Operator 

We turn next to the ground-state polaron problem, where the func- 
tional equation for I(s) is Eq. (3.26). This leads to the equation for s  

8Ej 
(~'[Y.j(s)l~" > + ~o f dy, (f[IJ(yl) 6~(y~) [~ > 

= - S") + - ( S ' ] q ~  ' i ~ " )  ( 5 . 1 6 )  J(~)a(r f dy, W(~ y,) (y,j 

Again qb(yl) = ISY.j [ 6J(yl).  
The equation for ~5(yl) is now modified in an interesting way. We 

introduce 

O(s I~) = [~ + 1 - ' ( s ) ] - '  (5.17) 

A t  J = 0, Q --~ Qo, 

Qo(s [~o) = [po l( s + oa) - g (s ) ]  - 1  (5.18) 

Now rewrite the equation for ~b(1) as 

<~l~'(yl)l~'> = <~1Q(s  L,o)l~'>8(y, - ~') 

6 q)(2) ') 
+ f < f d z  O(sl )Lz> W(z - y=)<zl 

a e ( 1 )  
- ,,,fay= (gl Q(s [ ~o)J(2)8--f~(2)I~") (5.19) 
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W ( :  - F )  

<~1Qo(s I ~)IF> 

Fig. 8. 
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To lowest order in W, and going to the limit J = 0 

0o'(S + ~) - y(s) 
If'> (5.20) 

This may be pictured as shown in Fig. 8. The electron propagator is 
modified by the phonon line above it. 

The next equation is for 849(1)/6J(2). After some algebraic manipula- 
tion, one finds 

8,(i) 

dQ(s I~0) 
= <;I ~ J ( l ~  I;'>8(y,  - ; 3  

6Q(s l o:) 

8J ( 2~ U U 

~e(3) 
Iz> m(z - y3)<z I ~ IT'> 

+ f+ f,z <el Q(s [ ~)[z> W(z - y3)<z I 8J(1)sJ(2) IF> 
] 82(I)(1) 6Q(slw) J(3)  + -o fdy3<gl 6J(2~ Q(sl~ 6J(3)SJ(2) I~'> 

(5.21) 

We will need this at J----0. In addition we drop the term 82q~(s)/SJ(1) 
8J(2). First we require an expression for 8Q(s]~)/6J(2). From 

8 
6J(2) [ QQ - ' ]  --- 0 (5.22) 

8Q 8E(s) 
8J(2) = Q 6J~-(2) Q = (I)(2) Q(s ]~) (5.23) 
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Hence, at J = 0, the first three hierarchy equations are 

(~ I~(s)l ~'> = fdy ,  W(; - y,)<; Ir E'> (5.24) 

I~lr = <gl Qo( s I o ; ) l~ '>8 (y , -  v )  

3~(2) 
+ f dz f dy2(fl Qo(slo;)lz>W(z - ya)(Z[ 8~-~(1) I~") (5.25) 

6~(1) 1 +  1 q5(2) O01U)6(yl - g') <El 8-3-~13-(2 3 E'> = <El o;O0 

(- (- 1 X 
J+vd < l 1 + o;eo ~b(2) Qolz~ 

a q b ( 3 )  
X W ( z  - y3)(z] ~ IE') (5.26) 

If 3cb(1)/3J(2)  is replaced by its value at W =  0, there is a self- 
contained equation for qs(1): 

<~1r = <El P l~ '>a (y l  - ~') 

1 +fdz(~l Q l z ) W ( z  - ~')<zl 1 + o;O r (5.27) 

The W 2 correction to 51 is 

<g151(s)lg'> = w(E - g')<EI Po( s I o;)lf'> 

+ f fdyl dy2 W(; - y~)W(y, - ; ' ) (El  Qo(s I ~ ) ly , )  

• (Y,[  Qo( s 120;)IY2)(Y21Qo( s [ o;)l~") (5.28) 

with Q o l ( S l m O ) =  pol (S  + n o ; ) -  s The expression for ~:(s) may be 
pictured as in Fig. 9. We have the rule that the propagator between two 
points is Q0(sl no;) if there are n lines above the propagator. 

There is an exact solution to the equation for ~(1) for the case of a 
one-dimensional polaron with W ( x )  = Xa(x).  We set down the final result 

1 
w(y~ - ~') 

w(~ - y2) 

Qo( s ]~) Y, 

Fig. 9. 

+ 

Qo(s [o~) "~' ~ Qo(s 12~o) Y2 Qo(s [~) 
J 



Functional Equations for Path Integrals 213 

for E(k [ s). It is 

E(k, Is) = h(O I 1 iO > 
0o-'(s + ,o) - 2(s)  

x ~ c &, fi(k, Is) + 
27 0 [ s + a , + ( k  + k , )2 /2_ ,2 (k  + k, ls)] 1 - X / ~ ( k , I , )  

(5.29) 

Here 
dk  2 

ls)---f Is+ k /2-  (k21s)] 

• 1 (5.30) 
IS "[" 03 Or" (k  1 -~ k2)2/2  - 2 ( k  1 -[- k2l s ) ]  

This is of course accurate to order h 2. But there is now a formidable 
self-consistency problem, particularly since the mass operator is dependent 
on the wave vector k .  

We now consider the finite temperature polaron problem. The preced- 
ing results can be taken over directly if we interpret J ( 1 ) =  J (y l [ cq ) ,  
fd(1) = f fdy,  da,. The equation for Xs is 

,- 6Zj 
(~IyA~> + ~Jd(1)a,<~llJ(1) ~ [g'> 

= a(;-  

+ f d ( l )  W(~ - y ,  I ~,)<~1~(1)1~'> (5.31) 

At J = 0  

<ff] Q0--1( S I a ,~)~(1)[U> = 8(~- - ~")8(y, - ~") 

8~,(2) • yzl~2)(ffl6~(1)lU > (5.32) 

The simplest coherent potential approximation is 

<fl~lf'> =fd~,  W(f - if '  [ O~l)<ff [ Qo(s [ ar (5.33) 

The second-order correction to the mass operator involves the propagators 
Q0(s[ al~O), Qo(s[ al~O + a2~0), Qo(s[ a2w), with integrations over a I and %. 

Again only a slight change of notation to treat the general finite 
temperature phonon problem. Let J ( 1 ) =  J(kl]yllal), w I = ~0(kl), d(1) 
= dk I dy 1 da 1, etc. Then we only have to replace 

m[~" - y ~  I ~,)-+ ~ ( k � 9 1  I~,)e 'k'(~-y') 
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Thus 

<;Iz, l;'> + fd(1) ~,o~,<glIJ(1) ~ z,l; '> 

= f d ( 1 ) J ( t ) ~ ( g  - yz)3(f - ~") 

+ f d ( 1 )  ~ ( k  1 [ a,)eik'(;-Y')(f Iq~(1)lff' 5 (5.34) 

The equation for q~(1)= 8s is 

(f]  Q -  L(s ] alWl)~(1)lff'} = 8(y I -- ~ ')~}([ '  -- ~ ' )  

,k 8d~(2) 
+ fd(2) ~(k21~2)e 2(u-y,)(gl _~(1~ If'5 

8~(1) 
- fd(2) ~2~2<~ l J (  21 8--)~-(2) If'} (5.35) 

Q -1(S I Ol,(~O1) = I-1(s) + a,oa(kl) (5.36) 

The lowest approximation at J = 0 is 

(~[:~(*)lg'> = fd(1) ~(k~ l al)eik'(~-~')(g I Qo(slalw0lg'> (5.37) 

To proceed to higher approximations use 

8Q -1 8s  _ 
tSJ(2) (s I alO~l) = 8J(2) I -1(1)(2) (5.38) 

Q -1( s I a~% + a2a~2) = I o 1(s + a1% + a2w2) - s  (5.39) 

A t  J = 0 this leads to 

80(1) , 
(~100'(slal% + %%) ~ ] ~  } 

_- (~-II - 1(1)O(2)O(1)[U) 

t$ 2qb(3) 
+ f d ( 3 )  l/P(3)eik'(r 8J(2)6J(1) IS") (5..40) 

Neglecting 82~b(3)/6J(2)SJ(1) we have an equation for (b(1) 

(S'I Ool( s I al%)qb(1)lU> 

= ~ ( y , -  V)a (~ -  ~') 

+ fa(2) ff~(k~ I .2)e<~-'2)(;I Qo(~ I -,,o~ + -~,o~)l- ~(1)~'(2)1r 
(5.41) 



Functional Equations for Path Integrals 215 

This concludes our discussion of generalized coherent potential ap- 
proximation, i.e., approximations to the mass operator in terms of exact 
propagators, so that one has self-consistent type equations for the determi- 
nation of s  s). 

6. A SECOND TYPE OF GENERATING ACTION 

We return to the ground-state polaron action and show that a different 
functional equation can be derived. Introduce the generating functional 

B~: (T )= fdzK(z ) [ s176  (6.1, 

This differs from the previous Aj(T)  by a factor e -'~r. We find 

<;li(r) - t;o(r)l;'> 
= - 

Taking the Laplace transform 

_ ) ~ 8  <:lI(~+~0)f:'> ( f l po ' ( S ) I ( s ) -  11s = f dy, W[f y, 

+ K(Y)<glI(s - ~0)l~" > (6.3) 

While the equation has a simpler dependence on the functional deriva- 
tive, it is a difference equation in the s variable. The bare propagator theory 
is even simpler than with the Aj generator. Thus the second equation of the 
hierarchy is, at K = 0 

(~]po'(S + o:) 6I(s + ~o) 
6K(y,) 

[~'> = 6 ( ~  - y , ) ( ~ l I ( s ) ] ~ ' )  

821(s + o~) 
• f d y  2 W( f  - Y2)<f] 6K(y2)6K(y,) ]~'> 

(6.4) 

and we easily obtain our earlier results. 
The functional equation for ZK, which leads to dressed propagator 

expansions, however, appears to be less convenient. We use 

6I(s + oD) 6ZK(s + w) 
i~K(yi) - -  I(s + ~o) (~K(yl) I(s + w) (6.5) 
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to derive 

�9 I ( s ) l U )  = K(~)(glI(s + ~o)1~") 

+ f w ( ~ -  yOI(s + o~) 
, XK(s + ,o) 

8K(y,) �9 : ( s  + ,o ) l f ' )  

(6.6) 

We have found the Es functional equation to be easier to work with. 

7. CONCLUSIONS 

Our starting point has been the path integral for the density matrix 
that results when the phonon degrees of freedom are exactly eliminated. 
The aim is to provide approximations for the mass operator in terms of 
exact propagators. We do this by adding special generating functionals to 
the action and then constructing functional derivative equations. 

It is possible to extend the procedure to compute averages of products 
of density matrices and als0 time-temperature Green's functions. This 
makes contact with the important work of Kadanoff, Langreth, and Rev- 
zen (21) on the transport properties of polarons. 

A word of caution is in order. The field theory description presented 
here does not treat deep traps properly. For the Gaussian random potential 
problem the Laplace transform of the density matrix does not exist. If the 
covariance function W(x) is a constant W0, the density matrix ~3(/3) has a 
term exp(W0/32/2). If W(x) has a Taylor series expansion in x 2, there is a 
term proportional to /33/2. It would be desirable to have a theory that 
includes these asymptotic features as well as being in terms of exact 
propagators. One way to do this is to base the formalism on a quadratic 
trial action rather than on a free particle action. This extension will be 
discussed elsewhere. 

For electron-phonon problems, there is no difficulty with the Laplace 
transforms. However, the exact propagator approach does not treat the 
strong-coupling (Pekar) limit of the polaron in a satisfactory manner. 
Again, a possible way to handle this is to use a quadratic trial action as the 
starting point. In this way one can embed the Feynman polaron theory in a 
systematic field theory approach. 
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